The LASIK Technology development
Monday, December 04, 2006
The LASIK technique was made possible by Jose Barraquer (Colombia), who around 1960 developed the first microkeratome, used to cut thin flaps in the cornea and alter its shape, in a procedure called keratomileusis.In 1981, Rangaswamy Srinivasan discovered that an ultraviolet excimer laser could etch living tissue in a precise manner with no thermal damage to the surrounding area. He named the phenomenon Ablative Photodecomposition (APD). Srinivasan and his co-inventors ran tests using the excimer laser and a conventional, green laser to etch organic matter. They discovered that while the green laser produced rough incisions, damaged by charring from the heat, the excimer laser produced clean, neat incisions. In 1983, Srinivasan collaborated with an ophthalmic surgeon to develop APD to etch the cornea.
LASIK surgery was developed in 1990 by Lucio Buratto (Italy) and Ioannis Pallikaris (Greece) as a melding of two prior techniques, keratomileusis and photorefractive keratectomy. It quickly became popular because of its greater precision and lower frequency of complications in comparison with these former two techniques.
In 1991, LASIK was performed for the first time in the United States by Stephen Brint and Stephen Slade.
Today, faster lasers, larger spot areas, bladeless flap incision, and wavefront-optimized and -guided techniques have significantly improved the reliability of the procedure as compared to that of 1991. Nonetheless, the fundamental limitations of excimer lasers and undesirable destruction of the eye's nerves have spawned research into many alternatives to "plain" LASIK, including all-femtosecond correction (FLIVC), LASIK, Epi-LASIKK, wavefront-guided PRK, and modern intraocular lenses. Furthermore, the long term effects of LASIK surgery still remain unknown.
The energy of each pulse is usually in the milliwatt range. Typically, each pulse is on the order of 10-20 nanoseconds.
Suorce: Wikipedia.org , the free encyclopedia